City
Epaper

Research suggests how cancer cells may predict metastatic potential

By ANI | Updated: May 6, 2023 23:35 IST

Washington [US], May 6 : Cancer cells that begin metastasis, or the spread of the sickness from its origin, ...

Open in App

Washington [US], May 6 : Cancer cells that begin metastasis, or the spread of the sickness from its origin, differ from cancer cells that remain in the original tumour.

Differentiating metastasis-initiating cell types can help doctors identify the severity of malignancy and plan a treatment plan.

Texas Tech University researchers developed a deep learning model to categorise cancer cells by kind in APL Machine Learning, published by AIP Publishing. The instrument takes only a basic microscope and a little amount of computational power to provide results that are comparable to or better than more advanced and complex procedures.

"Cancer cells are highly heterogeneous, and recent studies suggest that specific cell subpopulations, rather than the whole, are responsible for cancer metastasis," said author Wei Li. "Identifying subpopulations of cancer cells is a critical step to determine the severity of the disease."

Current methods to categorize cancer cells involve advanced instruments, time-consuming biological techniques, or chemical labels.

"The problem with these complicated and lengthier techniques is that they require resources and effort that could be spent exploring different areas of cancer prevention and recovery," said author Karl Gardner.

Some studies use magnetic nanoparticles to track cancer cells, but attaching these labels could affect the downstream analysis of the cells and integrity of the measurements.

"Our classification procedure does not consist of additional chemicals or biological solutions when taking pictures of the cells," said Gardner. "It is a 'label-free' identification method of metastatic potential."

The team's neural network is also simple to use, efficient, and automated. After feeding it an image, the tool converts the data to a probability. A result lower than 0.5 categorizes cancer as one cell type, while a number higher than 0.5 designates another.

Disclaimer: This post has been auto-published from an agency feed without any modifications to the text and has not been reviewed by an editor

Tags: Texas Tech UniversityTexas tech university health sciences centerWei liKarl gardnerApl machine learning
Open in App

Related Stories

TechnologyStudy: Cancer cells can anticipate metastatic potential

TechnologyResearchers reveal how cancer cells can predict metastatic potential

HealthNews addiction impacts mental, physical health: Study

LifestyleProlonged sitting puts health at risk: Study

TechnologyInsomnia negatively impacts people's physical, mental health: Research

Technology Realted Stories

TechnologyGovt begins testing new mobile alert system for real-time disaster warnings

TechnologyGovt committed to create facilitative trade environment: Piyush Goyal to exporters

TechnologyIsraeli researchers discover security flaw in popular AI chatbots

Technology10 Years of Digital India: Transformation of Bharat from digitally divided nation to world’s digital capital

Technology9 sectors have potential to generate up to $738 billion revenue in India by 2030: Report