City
Epaper

Study demonstrates how folate receptors in brain tumours are identified

By ANI | Published: June 25, 2023 7:55 PM

Turku [Finland], June 25 : Folate-based radiopharmaceuticals can be used in positron emission tomography (PET) imaging to identify folate ...

Open in App

Turku [Finland], June 25 : Folate-based radiopharmaceuticals can be used in positron emission tomography (PET) imaging to identify folate receptors in brain tumours. The identification of folate receptors and its potential application in brain tumours is a fresh and significant scientific breakthrough.

Hundreds of genes have been linked to limb girdle muscular dystrophy. While genetic testing may discover a handful of rare genetic variants in each patient with the disorder, there is no way to know which, if any, of those variants is responsible for a patient's symptoms without invasive, time-consuming additional tests. Unfortunately, there is no comprehensive catalogue of all the variants of all the genes connected to limb girdle muscular dystrophy, and whether each of those variants can cause disease or is harmless.

"Prior to this discovery, the presence of folate receptors and their increased presence in gliomas had not been recognised, and thus they have not yet been used for imaging nor treatment purposes," summarises Doctoral Researcher Maxwell Miner from the Turku PET Centre at the University of Turku in Finland.

According to research group leader and InFLAMES PI Professor Anne Roivainen this presents an especially exciting target for potential future treatments.

"Our results show an average of 100-fold increase in folate-based radiopharmaceutical accumulation in glioma tissue versus that of adjacent healthy brain tissue," says Professor Roivainen.

Glioma brain tumours originate from the non-neuronal glial cells in the brain, which outnumber neurons in quantity. Gliomas comprise numerous subgroups, with even a high degree of morphological and receptor variability within a single cancerous lesion.

This exceptional cellular heterogeneity can make treatment difficult. There is an urgent need for new chemotherapy treatments particularly for the most malignant brain cancers as they often grow in an infiltrative web-like manner on their periphery making distinguishing the boundaries between glioma and non-glioma difficult. The researchers at the Turku PET Centre hope that this recent discovery will lead to further investigation into folate-targeted brain tumour detection and treatment.

The results were obtained in a multidisciplinary joint project involving researchers from the Turku PET Centre at the University of Turku, Turku University Hospital, InFLAMES Research Flagship, and collaborators from Purdue University, USA. The glioma samples were obtained from the Auria Biobank.

Disclaimer: This post has been auto-published from an agency feed without any modifications to the text and has not been reviewed by an editor

Tags: Turku University HospitalAnne roivainenFinlandAbb FinlandThe University Of Eastern FinlandFinnish HealthFinnish ParliamentThe University Of TurkuUniversity Of TurkuTurkuFinland chamber of commerceTampere university in finland
Open in App

Related Stories

MaharashtraPune Man Scammed of 16 Lakhs Under False Job Opportunity Promise in Finland

InternationalRussia-Ukraine War: Vladimir Putin Vows to Deploy Troops Along Finland Border After It Joins NATO

PoliticsKejriwal meets 50 MCD school principals who underwent training at IIM Ahmedabad

TechnologyArterial stiffness cause metabolic syndrome in adolescents: Study

InternationalEndometriosis linked to reduction in fertility: Study

Health Realted Stories

HealthSouth Korea reports first 'highly pathogenic' bird flu case in more than three months

HealthDelhi HC closes PIL on medicine shortage in Rajan Babu Institute after govt's assurance

HealthH5N1 Bird Flu Human Cases in US & Australia Cause Concern: Know the Reason

HealthEpidurals can cut risk of severe childbirth complications by 35 pc: Study

Health1st India made surgical robotic system SSI Mantra performs 100 cardiac surgeries