City
Epaper

IIT Roorkee team finds superbug’s defense mechanism, to boost new treatments

By IANS | Updated: February 10, 2025 17:45 IST

Roorkee, Feb 10 Scientists at the Indian Institute of Technology (IIT) Roorkee have uncovered a crucial regulatory mechanism ...

Open in App

Roorkee, Feb 10 Scientists at the Indian Institute of Technology (IIT) Roorkee have uncovered a crucial regulatory mechanism in Acinetobacter baumannii -- a highly drug-resistant superbug responsible for life-threatening infections.

Their study, published in the journal mBio, reveals how the pathogen controls its attack and defense systems, paving the way for new treatment strategies.

Acinetobacter baumannii poses a serious threat in healthcare settings as it resists multiple antibiotics. It causes severe hospital-acquired infections, including pneumonia, bloodstream infections, and urinary tract infections.

To attack competing microbes, the superbug uses the Type 6 Secretion System (T6SS) -- a bacterial "weapon". However, its mechanism for maintaining antibiotic resistance has remained unclear until now.

The research team, led by Prof. Ranjana Pathania, discovered that A. baumannii switches T6SS on or off based on environmental conditions. They found that a small RNA molecule -- AbsR28 -- plays a key role in this regulation, influenced by manganese levels.

When manganese levels are high, AbsR28 binds to an essential gene (tssM) required for T6SS function. This not only leads to its degradation but also prevents the activation of T6SS, said the researchers.

Increased manganese levels also enable A. baumannii to retain plasmid pAB3, which carries multiple antibiotic-resistance genes.

“We found that when A. baumannii activates T6SS, it becomes more vulnerable to antibiotics and oxidative stress. So, the bacteria must carefully regulate this system to survive in different conditions,” said Prof. Pathania.

“Our discovery sheds light on how this pathogen adapts during infections, helping it evade both antibiotics and the immune system,” she added.

The findings showed that targeting AbsR28 can help disrupt the superbug’s regulatory system. This makes it more susceptible to antibiotics without directly attacking resistance genes. The discovery also opens new avenues for precision medicine and novel drug development against multidrug-resistant infections.

Disclaimer: This post has been auto-published from an agency feed without any modifications to the text and has not been reviewed by an editor

Open in App

Related Stories

InternationalUK cuts post-study work visa duration for international graduates from 5 years to 18 months

Cricket"No individual has done as much for Test cricket": Vaughan, Warner pay heartfelt tribute after Virat's retirement

Other SportsIndia wins 19 medals as Korea tops medals table in Dubai Para-Badminton International

CricketA look at Virat Kohli's Test performances in New Zealand over the years

NationalCM Dhami vows to develop Uttarakhand as spiritual capital of India

Technology Realted Stories

TechnologyUPI Down: Google Pay, Paytm Users Face Transaction Failures On Mobile

TechnologyRaymond Lifestyle suffers Rs 45 crore net loss in Q4; revenue and margins take a hit

TechnologyJaggi brothers resign from top posts at scam-hit Gensol Engineering

TechnologyVijaya Diagnostic Centre’s profit dips in Q4, expenses rise 13.8 pc

TechnologyMorepen Labs’ Q4 net profit declines 29 pc as rising expenses weigh on margins