City
Epaper

IIT Roorkee team finds superbug’s defense mechanism, to boost new treatments

By IANS | Updated: February 10, 2025 17:45 IST

Roorkee, Feb 10 Scientists at the Indian Institute of Technology (IIT) Roorkee have uncovered a crucial regulatory mechanism ...

Open in App

Roorkee, Feb 10 Scientists at the Indian Institute of Technology (IIT) Roorkee have uncovered a crucial regulatory mechanism in Acinetobacter baumannii -- a highly drug-resistant superbug responsible for life-threatening infections.

Their study, published in the journal mBio, reveals how the pathogen controls its attack and defense systems, paving the way for new treatment strategies.

Acinetobacter baumannii poses a serious threat in healthcare settings as it resists multiple antibiotics. It causes severe hospital-acquired infections, including pneumonia, bloodstream infections, and urinary tract infections.

To attack competing microbes, the superbug uses the Type 6 Secretion System (T6SS) -- a bacterial "weapon". However, its mechanism for maintaining antibiotic resistance has remained unclear until now.

The research team, led by Prof. Ranjana Pathania, discovered that A. baumannii switches T6SS on or off based on environmental conditions. They found that a small RNA molecule -- AbsR28 -- plays a key role in this regulation, influenced by manganese levels.

When manganese levels are high, AbsR28 binds to an essential gene (tssM) required for T6SS function. This not only leads to its degradation but also prevents the activation of T6SS, said the researchers.

Increased manganese levels also enable A. baumannii to retain plasmid pAB3, which carries multiple antibiotic-resistance genes.

“We found that when A. baumannii activates T6SS, it becomes more vulnerable to antibiotics and oxidative stress. So, the bacteria must carefully regulate this system to survive in different conditions,” said Prof. Pathania.

“Our discovery sheds light on how this pathogen adapts during infections, helping it evade both antibiotics and the immune system,” she added.

The findings showed that targeting AbsR28 can help disrupt the superbug’s regulatory system. This makes it more susceptible to antibiotics without directly attacking resistance genes. The discovery also opens new avenues for precision medicine and novel drug development against multidrug-resistant infections.

Disclaimer: This post has been auto-published from an agency feed without any modifications to the text and has not been reviewed by an editor

Open in App

Related Stories

CricketIndia Women Beat Sri Lanka by Seven Wickets to Take 2-0 Series Lead (VIDEO)

AurangabadClerk demanded bribe to reduce professional tax from Rs 3 lakh to Rs 20,000

NationalConspiracy to ‘loot’ Aravalli range, BJP pressuring report in SC: Rajasthan Congress

Other SportsMinistry of Youth Affairs and Sports launches 'Comprehensive Internship Policy' to build next generation of sports professionals

AurangabadTaps run dry as city water supply disrupted for 11 hours

Technology Realted Stories

TechnologyRBI announces Rs 3 trillion liquidity boost to through OMOs, forex swap

TechnologyMinister advises India Post to drive strategic biz growth, boost regional outreach

TechnologyGovt reaffirms commitment to integrate surveillance, strengthen labs to combat influenza

TechnologyOver 4,500 Industrial Parks playing key role in India’s big push for growth

TechnologyExperts call for ramping up science and tech investment in India