City
Epaper

Indian researchers develop transistor using single molecule for faster electronics

By IANS | Updated: September 2, 2024 20:00 IST

New Delhi, Sep 2 In a breakthrough in electronics, scientists at the S. N. Bose National Centre for ...

Open in App

New Delhi, Sep 2 In a breakthrough in electronics, scientists at the S. N. Bose National Centre for Basic Sciences, an autonomous institute, developed a unique transistor using single molecules.

The novel transistor is controlled by mechanical forces rather than traditional electrical signals.

This "could pave the way for advancements in areas like quantum information processing, ultra-compact electronics and sensing applications", the team said.

The researchers used a piezoelectric stack to meticulously break a macroscopic metal wire to create a sub-nanometer gap precisely sized for a single molecule like ferrocene in a technique known as mechanically controllable break junction (MCBJ).

"This molecule, structured with an iron atom sandwiched between two cyclopentadienyl (Cp) rings exhibits altered electrical behaviour when mechanically manipulated, demonstrating the potential of mechanical gating in controlling electron transport at the molecular level," the team said.

The team led by Dr Atindra Nath Pal and Biswajit Pabi discovered that the orientation of ferrocene molecules between silver electrodes significantly affects the transistor's performance. Depending on the molecular orientation, the device can either enhance or diminish electrical conductivity through the junction, underscoring the importance of molecular geometry in transistor design.

With further research, the team explored gold electrodes with ferrocene at room temperature. The combination resulted in a surprisingly low resistance, nearly five times the quantum of resistance (around 12.9 kiloohms), but significantly lower than the typical resistance of a molecular junction (around 1 megohm). Ohms are used to measure the electrical resistance of a material or device.

"This suggests the possibility of creating low-power molecular devices. These devices could pave the way for advancements in areas like low-power molecular devices, quantum information processing and sensing applications," the team said. The findings are published in the journal Nano Letters and Nanoscale.

Disclaimer: This post has been auto-published from an agency feed without any modifications to the text and has not been reviewed by an editor

Open in App

Related Stories

InternationalUS Senate fails to break deadlock as shutdown drags on

InternationalTrump deploys top diplomatic force to shore up Gaza peace deal 

InternationalWhite House repeats claim of India scaling back Russian oil purchases at request of President Trump

Cricket"We like to keep it pretty simple": Pratika Rawal on her 212-run stand with Smriti Mandhana

InternationalPutin calls US sanctions 'serious', says it will not 'significantly' impact Russia's economy

Technology Realted Stories

TechnologyIndian Railways sets up multi-level war rooms to manage passenger rush: Ashwini Vaishnaw

TechnologySEBI bans first overseas capital for two years, fines Rs 20 lakh for rules violations

TechnologyIndia must harness AI as a force for social good: MeitY Secretary

TechnologyDigital payments make up 99.8 pc of all transactions in H1 2025: RBI

TechnologyIndia's effective office rents up 3.8 pc YoY in Q2CY25: Report