City
Epaper

Oxidative stress linked with development of cancer & neurological diseases

By IANS | Updated: March 10, 2025 23:01 IST

Thiruvananthapuram, March 10 ( IANS) In a ground-breaking discovery, researchers at RGCB- National Institute under the Ministry of Science ...

Open in App

Thiruvananthapuram, March 10 ( IANS) In a ground-breaking discovery, researchers at RGCB- National Institute under the Ministry of Science & Technology (Department of Biotechnology) have found the relation between mRNA processing to oxidative stress response, a condition that plays a major role in the pathogenesis of many ailments like cancer, diabetes, and cardiovascular and neurodegenerative diseases, alongside ageing.

Oxidative stress, particularly, in the heart, is critical in different conditions, including hypertension, heart failure, hypoxia, ischemia-reperfusion injury, atherosclerosis, and hypertrophy (excessive development of an organ or part).

The team of researchers at Rajiv Gandhi Centre for Biotechnology (RGCB), led by Dr Rakesh S. Laishram (Scientist), Dr Feba Shaji and Dr Jamshaid Ali, noted that during oxidative stress when the production of reactive oxidative species molecules exceeds cell’s ability to neutralise, production of antioxidant protein is ramped up by increasing the fidelity of RNA processing.

This research is published in the prestigious Redox Biology journal. Dr Laishram said controlling oxidative stress is important for keeping cells healthy and preventing human diseases.

“One key way cells regulate oxidative stress is by controlling gene expression through manipulations in the DNA, RNA or protein in the cell. This underscores the therapeutic relevance of targeting cleavage precision on an RNA in mitigating oxidative stress response and associated pathologies,” said Dr Laishram.

Hailing the research paper, RGCB Director Dr Chandrabhas Narayana said it is a significant study that will help determine the vital response of antioxidants in the pathogenesis and development of a disease.

The RGCB research paper has finally elucidated that the heterogeneity is driven by the fidelity cleavage complex to cleave at the primary cleavage site under oxidative stress.

This work represents the first example of the biological significance of cleavage imprecision or heterogeneity that regulates gene expression.

This study shows a new cleavage imprecision-mediated anti-oxidant response that is distinct from the other pathways of oxidative stress induction.

This finding will have ramifications in the understanding of disease pathogenesis, such as cardiovascular, cancer, inflammation, pathogenesis, neurodegeneration, ageing, or diabetes, where the antioxidant response is critical.

--IANS

sg/dan

Disclaimer: This post has been auto-published from an agency feed without any modifications to the text and has not been reviewed by an editor

Open in App

Related Stories

LifestylePongal and Makar Sankranti 2026: Experience Authentic South Indian Flavours at Top Restaurants in Mumbai

InternationalBJP must answer for its political use of Lord Ram: Cong backs Telangana MLC's remarks

TechnologyGovt asks online delivery platforms to drop '10-minute' commitments to protect gig workers’ safety

Other SportsLewis, Joseph return as WI announce squad for AFG T20Is

InternationalFour killed after Russia's overnight strikes with 300 drones, 18 ballistic, 7 cruise missiles on Ukraine: Zelenskyy

Health Realted Stories

HealthMyntra Cares launches mobility-led livelihood initiative, education programmes for underserved communities

HealthFive specialties account for over 50 pc FY25 revenue in NCR’s private hospitals: Report

HealthPoshan Udaan 2026: Gujarat's skies carry a message of nutrition

HealthWomen and elderly more likely to be vaccine-hesitant, says study

HealthAIIMS Bhopal performs complex cardiac surgery, gives new lease of life to 30-yr-old patient