City
Epaper

Study finds how sugar molecule affect cancer cell response to chemoradiotherapy

By ANI | Updated: June 12, 2023 21:40 IST

Washington [US], June 12 : Researchers at Georgetown University's Lombardi Comprehensive Cancer Centre and associates have discovered that a ...

Open in App

Washington [US], June 12 : Researchers at Georgetown University's Lombardi Comprehensive Cancer Centre and associates have discovered that a form of glucose, a type of sugar, is intricately linked to a pathway used to construct DNA molecules as part of their investigation into the complexities of biochemical pathways involved in cancer development. When this pathway is hyperactive, it can result in cancer and chemoradiotherapy resistance.

The findings of the study were published in Nature Chemical Biology.

"For a good while, my lab has been exploring cell signaling and DNA transcription mechanisms by which cellular metabolism changes in response to environmental and genetic cues, with the goal of designing strategies to treat cancer and other diseases," says Huadong Pei, PhD, associate professor in the Department of Oncology at Georgetown Lombardi and a corresponding author of the publication. "Knowing that cancer cells usually grow quickly and require more glucose than normal cells to reprogram their metabolism has been key to jumpstarting this latest research effort in the hope that we can gain a better understanding of how we can fight cancer at the cellular, or even subcellular level."

Pei's current research effort started when he and his colleagues looked at how nutrients that cells gobble up to stay alive end up triggering modifications to proteins as a result of adding a sugar called O-linked b-N-acetylglucosamine (O-GlcNAc) to the protein. This dynamic and reversible modification is emerging as a key regulator of a number of different cellular processes. In a series of experiments in both the lab and in mice, the researchers were able to determine that there is an important enzyme involved in nucleotide synthesis, called phosphoribosyl pyrophosphate synthetase 1 (PRPS1), that is modified by O-G1cNAc. Targeting either the sugar or the enzyme could be key to affecting cancer outcomes, the researchers believe.

"Ultimately, we would like to be able to design drugs that target DNA nucleotide synthesis, which includes the modifications we've identified of adding a sugar to a protein and the catalyzing step acted on by the PRPS1 enzyme," said Pei. "In particular, we'd like to develop drugs that can be used to make lung cancer more sensitive, or responsive, to radiotherapy and chemotherapy, as resistance to these therapies is still far too common. But there is still a long way to go, and many more experiments will be needed before we can even consider drug design."

Disclaimer: This post has been auto-published from an agency feed without any modifications to the text and has not been reviewed by an editor

Tags: GeorgetownGeorgetown UniversityLombardi comprehensive cancer centreHuadong peiusUs Secretary Of StateUs National Public RadioUs State DepartmentUs ArmyUs Department Of CommerceUs Food And Drug AdministrationUs DefenceUs Justice DepartmentUs District Court
Open in App

Related Stories

InternationalIndian-Origin Man Beheaded In US In Front Of Family After Violent Dispute

BusinessAnil Ambani’s Reliance Power and Reliance Infra Shares Zoom Even as Indian Markets Tumble Amid US Tariffs

InternationalMissouri House Blast: 5 Injured After Huge Explosion Damages 20 Homes in St Louis County

InternationalHurricane Erin Enters Into Category 2 Storm With Maximum Winds of 100 mph, Heavy Rainfall Over Caribbean Islands Likely

InternationalIowa Shooting: Two Killed, One Injured In Firing and Blast in Glenwood; Suspect Arrested

Technology Realted Stories

Technology260,000 GPUs to be deployed to build AI factories in S. Korea

TechnologyS. Korea has potential to become global leader in physical AI: Nvidia CEO

TechnologyIndia sets 3 Guinness world records under ‘Swasth Nari, Sashakt Parivar’ campaign

TechnologyIndia redefining global leadership in science and innovation: PM Modi

TechnologyDMRC partners with Mappls MapmyIndia to offer real-time metro updates on Mappls app