City
Epaper

AI may predict long-term risks of heart attack, cardiac death

By IANS | Updated: December 20, 2019 13:10 IST

Researchers have found that machine learning, patterns and inferences computers use to learn to perform tasks, can predict the long-term risk of heart attack and cardiac death.

Open in App

According to the study, published in the journal Cardiovascular Research, machine learning appears to be better at predicting heart attacks and cardiac deaths than the standard clinical risk assessment used by cardiologists.

"Our study showed that machine learning integration of clinical risk factors and imaging measures can accurately personalise the patient's risk of suffering an adverse event such as heart attack or cardiac death," said the study researchers from the Biomedical Imaging Research Institute in US

For the findings, the research team studied subjects from the imaging arm of a prospective, randomised research trial, who underwent coronary artery calcium scoring with available cardiac CT scans and long-term follow-up.

Participants here were asymptomatic, middle-aged subjects, with cardiovascular risk factors, but no known coronary artery disease.

Researchers used machine learning to assess the risk of myocardial infarction and cardiac death in the subjects, and then compared the predictions with the actual experiences of the subjects over fifteen years.

Subjects here answered a questionnaire to identify cardiovascular risk factors and to describe their diets, exercise and marital status.

The final study consisted of 1,912 subjects, fifteen years after they were first studied.

76 subjects presented an event of myocardial infarction and/or cardiac death during this follow-up time.

The subjects' predicted machine learning scores aligned accurately with the actual distribution of observed events.

The atherosclerotic cardiovascular disease risk score, the standard clinical risk assessment used by cardiologists, overestimated the risk of events in the higher risk categories. Machine learning did not.

In unadjusted analysis, high predicted machine learning risk was significantly associated with a higher risk of a cardiac event.

"While machine learning models are sometimes regarded as "black boxes", we have also tried to demystify machine learning; in this manuscript, we describe individual predictions for two patients as examples," said researchers

"When applied after the scan, such individualised predictions can help guide recommendations for the patient, to decrease their risk of suffering an adverse cardiac event," they added.

( With inputs from IANS )

Open in App

Related Stories

NationalTelangana Crime: Man Blinded with Chilli Powder, Tied to Tree and Beaten to Death by Former Lover and Her Husband

EntertainmentSandra Oh rules out return to 'Grey's Anatomy'

InternationalPakistan condemns US attacks on Iran's nuclear facilities, says Tehran has right to defend itself

BusinessHousing sales in top cities fall below 1 lakh unit, first time in 14 quarters: PropEquity report

Cricket"A master of his trade": Manjrekar hails Bumrah's brilliance amid batting dominance in Leeds Test

स्वास्थ्य Realted Stories

HealthICMR's affordable test kits boost diagnosis of genetic blood disorders in India

HealthParenting Tips: Know the Right Sleep Duration for Babies, Kids, and Teenagers

HealthHow ICMR's blood donor registry is saving lives of rare disease patients in India

HealthTripura CM Saha urges youths to embrace Yoga in digital era

HealthAyurveda: The Double Helix of Life — A Documentary that doesn’t promise answers but asks better questions