City
Epaper

Study suggests new ways to enhance memory for those with traumatic brain injury

By ANI | Updated: December 9, 2020 21:40 IST

Researchers from the UT Southwestern Medical Center sheds light on the encoding of the brain and claims new ways to enhance memory for the people suffering from traumatic brain diseases like Alzheimer.

Open in App

Researchers from the UT Southwestern Medical Center sheds light on the encoding of the brain and claims new ways to enhance memory for the people suffering from traumatic brain diseases like Alzheimer.

The findings published in PNAS and Science shows how the brain functions while encoding time and place into memories. The findings not only add to the body of fundamental research on memory but could eventually provide the basis for new treatments to combat memory loss from major diseases.

A group of neurons known as 'time cells' was discovered in rats, in a study done about a decade ago. The researchers found that the cells appeared vital and played a unique role in recording the events, which then correctly marked the order of what happens in episodic memory.

Bradley Lega, M.D., associate professor of neurological surgery at UTSW and senior author of the PNAS study explained that the cells, located in the brain's hippocampus, showed a characteristic activity pattern which the mals encode while recalling events. "By firing in a reproducible sequence, they allow the brain to orgze when events happen. The timing of their firing is controlled by 5 Hz brain waves, called theta oscillations, in a process known as precession," said Lega.

Lega and his colleagues recruited volunteers from the Epilepsy Monitoring Unit at UT Southwestern's Peter O'Donnell Jr. Brain Institute to investigate whether humans also have time cells by using a memory task that makes strong demands on time-related information.

For the research, the epilepsy patients were made to stay for several days before surgery to remove damaged parts of their brains that spark seizures. Lega told that the electrodes implanted in those patients' brains helped their surgeons to find valuable information on the brain's inner workings.

'Free recall' tasks that involved reading a list of 12 words for 30 seconds, were practiced with those 27 patients which were done following a short math problem to distract them from rehearsing the lists, and then recalling as many words from the list as possible for the next 30 seconds. The task required associating each word with a segment of time, which allowed Lega and his team to look for time cells.

What the team found was exciting and exceptional: Not only did they identify a robust population of time cells, but the firing of these cells predicted how well individuals were able to link words together in time (a phenomenon called temporal clustering). Finally, those cells appeared to exhibit phase precession in humans, as predicted.

According to Lega, "For years scientists have proposed that time cells are like the glue that holds together memories of events in our lives. This finding specifically supports that idea in an elegant way."

In the second study, Brad Pfeiffer, PhD, assistant professor of neuroscience, led a team investigating place cells (a population of hippocampal cells in both mals and humans that records where events occur). According to the researchers, while rats actively explore an environment, place cells further orgze into 'mini-sequences' that represent a virtual sweep of locations ahead of the rat. These radar-like sweeps happen roughly 8-10 times per second and are thought to be a brain mechsm for predicting immediately upcoming events or outcomes.

While these 'reverse replay' events were known to be important for memory formation, it was unclear how the hippocampus was able to produce such sequences. Considerable work indicated that experience should strengthen forward, 'look ahead' sequences but weaken reverse replay events.

To determine how these backward and forward memories work together, Pfeiffer and his colleagues placed electrodes in the hippocampi of rats, allowing them to explore two different places: a square arena and a long, straight track and then analyzed the mal's place cell activity to see how it corresponded to the locations.

Particular neurons fired as the rats wandered through the spaces, encoding information on the place. The same neurons fired in the same sequence as the rats retraced their paths, and periodically fired in reverse as they completed different legs of their journeys. However, taking a closer look at the data, the researchers found that as the rats moved through the spaces, their neurons not only exhibited forward, predictive mini-sequences, but also backward, retrospective mini-sequences. The forward and backward sequences alternated with each other, each taking only a few dozen milliseconds to complete.

"While these mals were moving forward, their brains were constantly switching between expecting what would happen next and recalling what just happened, all within fraction-of-a-second timeframes," Pfeiffer said.

In theory, Pfeiffer said that it might be possible to hijack the system to help the brain recall where an event happened with more fidelity. Similarly, Lega added that stimulation techniques might eventually be able to mimic the precise patterning of time cells to help people more accurately remember temporal sequences of events.

( With inputs from ANI )

Disclaimer: This post has been auto-published from an agency feed without any modifications to the text and has not been reviewed by an editor

Open in App

Related Stories

EntertainmentJessica Chastain is still 'trying to learn Italian' for her husband

BusinessNearly half of health insurance buyers in India cited rising medical expenses' as reason for purchasing insurance: Report

InternationalBalochistan: Police harasses public, unlawfully arrests citizens during peaceful meeting

NationalPM Narendra Modi Congratulates Neeraj Chopra For Breaching 90m Mark, Says 'India Is Elated And Proud'

InternationalUS Department of Homeland Security reviewing reality TV show for immigrants: Report

Technology Realted Stories

TechnologyHPCL empowers 28 startups with Rs 27 crore investment: Hardeep Puri

TechnologySouth Korea holds bilateral trade talks with 14 partners at APEC meeting

TechnologyKochi to host fourth Global Marine Symposium

TechnologyMizoram govt to expand digital services for public benefit, smart governance: CM Lalduhoma

TechnologyEmami's Q4 profit falls 41.9 pc QoQ, revenue drops 8.3 pc