City
Epaper

Study: Lymphoma cell metabolism might provide new cancer target

By ANI | Published: January 01, 2023 4:13 AM

Aggressive and relatively common lymphomas called diffuse large B cell lymphomas (DLBCLs) have a critical metabolic vulnerability that can ...

Open in App

Aggressive and relatively common lymphomas called diffuse large B cell lymphomas (DLBCLs) have a critical metabolic vulnerability that can be exploited to trick these cancers into starving themselves, according to a study from researchers at Weill Cornell Medicine and Cornell's Ithaca campus.

The researchers, whose study was published Dec. 13 in Blood Cancer Discovery, showed that a protein called ATF4, a genetic master-switch that controls the activities of hundreds of genes, has a key role in supporting the fast growth of DLBCLs. The scientists found that silencing ATF4 in DLBCL cells essentially fools the cells into starving themselves and slowing their growth -- and that targeting ATF4 along with a closely related metabolic protein, SIRT3, even further enhances this cancer-killing effect.

"ATF4 represents a crucial and exploitable vulnerability in DLBCLs -- and one that they appear to share regardless of the specific genetic mutations that trigger them," said study co-senior author Dr. Ari Melnick, the Gebroe Family Professor of Hematology / Oncology in the Division of Hematology and Clinical Oncology and a member of the Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine.

Dr. Hening Lin, a professor in the Department of Chemistry and Chemical Biology at Cornell University in Ithaca and a Howard Hughes Medical Institute investigator, is the other co-senior author of the study.

Lymphomas are blood cancers that usually originate from immune cells such as B cells, the producers of antibodies. The vast majority of lymphomas are so-called non-Hodgkin lymphomas, and DLBCLs account for about a third of these, or roughly 25,000 cases per year in the United States. DLBCLs are relatively fast-growing and aggressive, and despite many advances in lymphoma treatment in recent decades, about 40 percent of cases are not cured -- a statistic that underscores the need for new treatment strategies.

Dr. Melnick, Dr. Lin and their colleagues set out in the study to investigate SIRT3, which resides in mitochondria, the tiny, oxygen-burning fuel reactors in our cells that are essential for powering cellular activities. The research team had discovered in a 2019 study that SIRT3 strongly supports the growth and survival of DLBCLs by speeding up the biochemical reactions that produce the molecular building blocks cells need to proliferate.

In the new study, the researchers explored further how SIRT3 promotes DLBCL growth, and found that one of the important ways it does this is by increasing the production of another metabolism-influencing protein, ATF4.

Their experiments revealed that SIRT3, as it turbo-boosts DLBCL metabolism, reduces the pools of amino acids that cells use to make proteins and otherwise fuel their growth. This reduction amounts to a starvation signal that activates the production of ATF4, which in turn ramps up the production and import of amino acids, further sustaining DLBCLs' malignant proliferation.

Dr. Melnick and Dr. Lin in their 2019 study developed a selective SIRT3 inhibitor and showed that it kills DLBCL cells regardless of the cancer-driving mutations they carry. In the new study the researchers showed that SIRT3 inhibition results in accumulation of specific amino acids that are generated by the treated cells cannibalizing their own proteins. This situation essentially tricks DLBCL cells into behaving as if they had an adequate nutrient supplies and results in paradoxical suppression of ATF4 production, in turn leading to more severe starvation.

Further harnessing this effect for therapeutic benefit, the investigators experimented with a compound that blocks the activation of ATF4 and found that it has a similar broad impact on DLBCL cells. In addition, they found that combining the blockers of ATF4 and SIRT3 has a striking lymphoma cell-killing effect -- much more potent than either blocker on its own. Combining ATF4 and SIRT3 inhibitors thus seems a promising strategy against DLBCLs.

"One of the really interesting things about this study is that it shows how nutrient conditions, in principle even from patients' diets, can profoundly affect cancer-cell activity," said study first author Dr. Meng Li, a member of the Melnick Laboratory who is also an instructor of cancer genomics in medicine at Weill Cornell Medicine.

The team is now conducting further experiments to find the best way to target the SIRT3-ATF4 axis to treat DLBCLs.

"My lab has been working on the sirtuin family of enzymes for more than 10 years, yet this study revealed some very interesting connections among SIRT3, metabolism and nutrient or stress sensing," said Dr. Lin. "We are excited to consider the translational potential of this finding in treating lymphoma."

( With inputs from ANI )

Disclaimer: This post has been auto-published from an agency feed without any modifications to the text and has not been reviewed by an editor

Tags: IthacaWeill cornell medicineAri melnickHening linUnited StatesCornellThe statesEuaFar-westSuaUnited states stateU.s.a.District and stateVsa
Open in App

Related Stories

Cricket'Dil Kaise Baya Kare..': Pakistani Fan Vents Anger Over PAK's Shocking Defeat to USA in T20 World Cup 2024 (Watch Video)

InternationalUnited States envoy meets with Egyptian ministers in Cairo over Gaza crisis

Social Viral"Saving His Gujju Captain With…”: Nitish Kumar Funny Memes and Jokes Go Viral After USA Batter’s Heroic Against Pakistan

CricketWATCH: Azam Khan Involved in Heated Exchange With Fan After Golden Duck in USA vs PAK T20 World Cup 2024 Match

Social ViralFunny Memes and Jokes Go Viral After USA Restrict Pakistan to Modest 159/7

Technology Realted Stories

TechnologyPaytm shows early signs of recovery in UPI transactions, sees growth in payment value processed

TechnologyBihar's Nagi & Nakti bird sanctuaries added to Ramsar list, India's wetlands rise to 82

TechnologyAdani One partners with Cleartrip to provide users bus travel options

TechnologyTCS launches GenAI aggregation platform for firms to adopt next-gen tech at scale

TechnologyAI flagship killer realme GT 6 is set to become the most coveted smartphone