City
Epaper

Researchers discover new approach that help overcome treatment resistance in cancer

By ANI | Updated: May 4, 2023 06:00 IST

La Jolla (California) [US], May 4 : The immune system's T cells undergo a process known as T cell ...

Open in App

La Jolla (California) [US], May 4 : The immune system's T cells undergo a process known as T cell exhaustion when they are constantly stressed out as a result of cancer or other chronic disorders. Without functioning T cells, which destroy tumour cells, our bodies are unable to combat cancer. In order to increase the immune system's capacity to eliminate malignant cells, one of the main objectives of immunotherapy is to reverse T cell fatigue.

Melanoma researchers at Sanford Burnham Prebys have devised a fresh method to accomplish this. Their method, which was recently described in Cell Reports, can lessen T cell exhaustion even in tumours that are resistant to immunotherapies that have received clinical approval. Additionally, it can prevent T cells from getting worn out.

"Slowing or reversing T cell exhaustion is a huge focus in cancer research, and many researchers are working on different ways to accomplish this," says first author Jennifer Hope, Ph.D., who completed this research as a postdoctoral researcher at Sanford Burnham Prebys and is now an assistant professor at Drexel University. "This new approach could be a viable treatment on its own, but it also has tremendous potential to work synergistically with existing therapies."

Although there are established immunotherapies that target T cell exhaustion, the new approach is unique in that it targets several different aspects of the process at once. This means that it could help people overcome resistance to various anti-cancer immunotherapies that are currently available.

"One of the foundational ideas of modern cancer treatment is not relying on a single therapy, since this can cause the cancer to become resistant to that treatment," says senior author Linda Bradley, Ph.D., a professor in the Cancer Metabolism and Microenvironment Program at Sanford Burnham Prebys. "The more tools at our disposal to slow down or reverse T cell exhaustion in different ways, the better chance we have of improving precision medicine and helping more people with cancer benefit from immunotherapy."

Their approach hinges on a protein called PSGL-1, which is found in most blood cells. By studying mice with a genetic deficiency in PSGL-1, the researchers determined that this protein helps facilitate T cell exhaustion, a major roadblock to effective anti-cancer immunity.

The researchers then used an antibody to block the activity of PGSL-1 in mice with immunotherapy-resistant melanoma. They found that targeting PSGL-1 slowed the process of T cell exhaustion and helped exhausted T cells switch back into functioning T cells. These two effects significantly reduced tumor growth in the mice.

"One of the things that makes this approach unique compared to existing immunotherapies is that it directly alters the way T cells become exhausted and helps them regain their function," says Hope. "I think this is going to be crucial in terms of its translational potential."

The researchers were also able to replicate this effect in mice with mesothelioma, suggesting that the approach could be applicable to a wide range of cancers. Although the treatment they used in this study is not yet suited for clinical use in humans, the overall approach of using antibodies or recombinant proteins for immunotherapy is well established. This means that translating these results for people with cancer may just be a matter of time and testing.

"Once we've done all the necessary science, this could be really valuable, or even lifesaving, for a lot of people with cancers that are resistant to current treatments," said Bradley. "We still have a long way to go, but I'm optimistic that we're onto something game-changing here."

Disclaimer: This post has been auto-published from an agency feed without any modifications to the text and has not been reviewed by an editor

Tags: Sanford Burnham Prebys Medical Discovery InstituteSanford burnham prebysDrexel universityJennifer hopeLinda bradleyusUs Secretary Of StateUs National Public RadioUs State DepartmentUs ArmyUs Department Of CommerceUs Food And Drug AdministrationUs DefenceUs Justice DepartmentUs District Court
Open in App

Related Stories

InternationalColorado Nightclub Raid: Over 100 Illegal Immigrants Detain at Underground Nightclub in US; Video Surfaces

BusinessGlobal Tech Firms Eye India for Manufacturing Amid US-China Tensions

InternationalIllinois Plane Crash: 4 Killed After Cessna C180G Aircraft Goes Down After Hitting Power Lines in Trilla

NationalPM Narendra Modi Discusses Tech and Innovation Collaboration With Elon Musk

InternationalCalifornia Shooting: 6 People Injured in Firing Outside Barbershop in Stockton

Health Realted Stories

HealthShingles vaccine can protect heart health up to 8 years: Study

HealthStudy shows HIV prevalence rising in older adults, but prevention focusses youth

HealthJharkhand govt to withdraw order removing RIMS Director, HC disposes of petition

HealthElderly dementia patients in S. Korea hold assets worth 6.4 pc of GDP: Report

HealthHere’s how Ayurveda tourism is redefining wellness travel